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Fig. 7. Pulse height as a function of pulsewidth needed to switch a
rectangular toroid of TT1-390 with m pulses.

CONCLUSION

" Using (1) it is possible to model the major magnetostatic
B-H loop of toroidal samples of some microwave ferrite materials
in terms of characteristic measured parameters of the material.
Approximate minor loops and switching trajectories such as those
encountered in latching reciprocal phase shifters [7], [9] can be
found through the use of (2). Temperature effects can also be
incorporated in this model. : ’

A relationship between the amplitude, pulsewidth, and number
of pulses needed to switch a toroid was found in terms of the
number of turns on the toroid, the switching current I, and the
remanent flux ®. This relation is in good agreement with the
results obtained from latching experiments.
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Mulfiple Branch-Guide Directional Coupler Using
TE,;-Mode Semicircular Waveguide

SHUICHI SHINDO

" Abstract—This short paper describes experimental results derived
from a newly devised branch-guide directional coupler using a TE,;-mode
semicircular waveguide. The length of an experimental 0-dB coupler
is about 150 mmi, which is one-third shorter than the conventional
coupled wave-type 0-dB coupler, and the loss is decreased in proportion
to the reduction in length. Using this coupler, it is possible to manufacture
more compact millimeter-wave diplexers with reduced insertion loss.

INTRODUCTION

A semicircular waveguide-type diplexer for the millimeter-
wave band has been developed consisting of two hybrid circuits
and two cutoff filters with high-pass responses [1]. The hybrid
is a coupled wave-type 3-dB directional coupler, which is
composed of two parallel TE,;-mode semicircular waveguides,
coupled to each other by a large number of small circular holes
cut in the common wall of the semicircular waveguide. However,
since the TE,;-mode semicircular waveguide is an oversized
waveguide, the coupling length must be long in order to avoid
spurious moding problems. For example, the length of the 3-dB
directional coupler is about 270 mm for the 30-GHz band.

An alternative is the multiple branch-guide directional coupler
using rectangular waveguide which is well known as being small
in size. The multiple branch-guide directional coupler for
rectangular waveguide has already been developed and its design
method has been established [2], [3]. The multiple branch-guide
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Fig. 1. i
directional coupler. (a) Structure. (b) Equivalent circuit.

directional coupler has now been implemented using the TE;-
mode semicircular waveguide for the purpose of miniaturizing
the previously mentioned diplexer. This multiple branch-guide
directional coupler is one-half to one-third in length, in com-
parison with the conventional coupled wave-type directional
coupler. ;

In the following, the structure and the approximate design
method of the multiple branch-guide directional coupler using
the TEq;-mode semicircular waveguide are presented and ex-
perimental results are given.

STRUCTURE AND DESIGN

The multiple branch-guide directional coupler using the TEy,-
mode semicircular waveguide is composed of two parallel
TE,;-mode semicircular waveguides, coupled to each other by a
large number of fan-shaped branch guides. The fan-shaped
waveguide has an inner radius R that is the same as the radius
of two semicircular waveguides and has vertical angle ¢, as
shown in Fig. 1(a). The transverse electric and magnetic field of
the TE,; mode in cylindrical polar coordinates are described
as follows [4]:

Ey = —Vo2/$ - Ji(EnIRIHX) o)
H, = IpN2/¢ - J,(&r)|RIo(X) @

where X is the first root of J; = 0 except zero: X = 3.83171,
¢ = X/R, and J, and J; are the first- and second-order of Bessel
function, respectively.

If ¢ = =, (1) and (2) represent the transverse electric and

magnetic field for the TE,; mode in semicircular waveguide.
The TE,, mode of semicircular waveguide and the TE;, mode
of the fan-shaped waveguide have identical eigenvalue and
propagation constants. It is assumed that the semicircular wave-
guide and the fan-shaped waveguide propagate only the TEq,
mode. The design of this coupler is accomplished approximately
by the same method as that used for the multiple branch-guide
directional coupler of rectangular waveguide. .

The S-matrix of the 4-port circuit, as shown in Fig. 1(b), can
be obtained from the superimposition of results obtained in the
even- and odd-mode cases [2]. In this method, it is necessary to
calculate the ratio of impedance between the semicircular wave-
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Fig. 3. Calculated frequenéy responses of the 3-dB coupler (22 branches).

guide and the fan-shaped waveguide. It has been found, after
some experimental examination, that the ratio of impedance is

@ = 2Z,/Z = 2¢/n. ©)]

From the previous equation, the required design parameters
are easily calculated and are summarized in Fig. 2. The figure
shows the vertical angle ¢ versus the number of branch-guides N
necessary to obtain 0-dB, 3-dB, and 6-dB coupling. The calculated
frequency responses for a 3-dB coupler of 22 branches are shown
in Fig. 3, where the radius of the semicircular waveguide and the

. fan-shaped waveguide is 9 mm, the vertical angle of the fan-shaped

waveguide is 0.11 rad, and the center frequency is 28 GHz. In
the figure, the solid line is the coupling-loss value, the dotted line
is the residual coupling-loss value, and the dot-dash line is the
directivity value.

EXPERIMENTAL RESULTS

In order to check the present design method, a multiple
branch-guide 3-dB directional coupler for the 30-GHz band was
manufactured, as shown in Fig. 4, and experimentally tested.
Two semicircular waveguides and the fan-shaped waveguide
were made individually and assembled in sandwich form. The
radius of the semicircular and fan-shaped waveguides was 9 mm,
the vertical angle and the length of the fan-shaped waveguide
were 0.11 rad and 2.65 mm, respectively. In Fig. 2, the 3-dB
coupling is obtained by 22 branches, where the vertical angle of
the fan-shaped waveguide is 0.11 rad. The experimental data of
the coupling loss and the residual coupling loss for the 0-dB
coupler consisting of two 3-dB couplers are shown in Fig. 5,
which agreed with calculated values. The insertion loss is
decreased in proportion to the length of the 0-dB coupler. But
the bandwidth of the 0-dB coupler is slightly narrow compared
with the conventional coupled wave-type 0-dB coupler.
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Fig. 4. Trial multiple branch-guide 3-dB directional coupler.
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Fig. 5.

It was suspected that mode conversion may occur because the
TE;-mode semicircular waveguide is an overmoded waveguide.
Especially, the TE,, mode may propagate because the propaga-
tion-constant difference between the TE,; mode and the TE,,
mode is very small, and because the field distribution of the TE,
mode at the plane wall is similar to that of the TE,, mode.
The mode-conversion ratio of the TE, ; mode was experimentally
measured using a tapered semicircular TE,;-mode transducer
[5]. It was found that the mode-~conversion ratio was less than
—20 dB, the convérsion loss is less than 0.05 dB, and the mode

conversion of the TE,, mode has a negligible effect on the TE,,

mode.

CONCLUSION

Design patameters of the present approximate theory have
made it possible to construct multiple branch-guide directional
couplers using. a TEy,-mode semicircular waveguide. Since the
length of the 0-dB coupler for the experimental model is about
150 mm, which is shorter than the conventional coupled wave-
type 0-dB coupler, the insertion loss is proportionally decreased.
It is possible to make a more compact diplexer and to decrease
the insertion loss of the diplexer for the millimeter-wave band
and also for the 20-30-GHz band.

It is expected that the technique will be used in the band-split-

ting filter for the 30-GHz band in the earth station of the Japanese
domestic satellite communication system [6].
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A Frequency-Independen( Large—Signai Equivalent
Circuit for a BARITT Diode and Its Application
- to an Amplifier

. KAORU OKAZAKI, MEMBER, IEEE,
NION SOCK CHANG, MEMBER, IEEE, AND
YUKITO MATSUO

Abstract—A. frequency-independent large-signal equivalent circuit
having five elements with only one resistive element is presented for the
BARITT diode. Tt is valid over the useful frequency range and is used for
the investigation of the BARITT-diode amplifier.

INTRODUCTION

The terminal characteristics of a microwave negative-resistance
device are nonlinear. An equivalent-circuit representation [1]
of the device, especially a frequency-independent equivalent
circuit, is useful in the investigation of the device performance
in a practical microwave circuit.

Recently, a large-signal frequency-independent equivalent
circuit has been proposed for IMPATT-diode characterization by
Gupta [2]. Although this equivalent circuit permits a useful
frequency range of validity, it requires a complex process for
evaluating the circuit elements and has a disadvantage in ap-
plication to the amplifier design because of two or three resistive
elements in the circuit [3]. The purpose of this short paper is to
present a novel frequency-independent large-signal equivalent
circuit having only one resistive element for a BARITT diode
and an application to the investigation of a BARITT-diode
amphﬁer performance.

EVALUATION OF THE EQUIVALENT Creulr

The frequency-independent equivalent circuit proposed here
is shown in Fig. 1. The basic circuits of the equivalent circuit are
a séries resonant circuit with a negative resistance and 4 shunt
resonant circuit. The admittance of the equivalent circuit ¥q(e)
is

R -
R? + [0L {1 — (o/0)*}])

qu(CD) =

+Jj [wC,,{l — (@,/0)*}

TR [mL 1 - (@)}

where w; = (\/Ls -C)tand @, = (\/Lp -C)”
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